Função Inversa e Implícita Função Inversa Teorema: Seja f : U ⊂ R n → R n f: U \subset \R^n \to \R^n f : U ⊂ R n → R n uma função de classe C 1 C^1 C 1 , com U U U aberto e um p ∈ U p\isin U p ∈ U . Se ∣ D f ( p ) ∣ ≠ 0 \vert Df(p)\vert \ne 0 ∣ D f ( p ) ∣ = 0 , então ∃ \exists ∃ um V ⊂ R n V \subset \R^n V ⊂ R n aberto, onde f ( p ) ∈ V f(p) \isin V f ( p ) ∈ V , tal que f : U → V f: U \to V f : U → V é bijetiva e f − 1 : V → U f^{-1}: V \to U f − 1 : V → U é de classe C 1 C^1 C 1 . Isto é, para ∀ p ∈ U \forall p \isin U ∀ p ∈ U temos:
D f − 1 ( f ( p ) ) = [ D f ( p ) ] − 1 Df^{-1}(f(p)) = \lbrack Df(p)\rbrack^{-1} D f − 1 ( f ( p ) ) = [ D f ( p ) ] − 1 TIP
Se ∣ D f ( p ) ∣ = 0 \vert Df(p)\vert = 0 ∣ D f ( p ) ∣ = 0 o teorema nada afirma sobre a injetividade de f f f ! Normalmente nestes casos o prof. considera que é trivial ver
a "olho" a injetividade de f f f à volta do ponto considerado.
Função Implícita Teorema: Seja F : R n → R m F : \R^n \to \R^m F : R n → R m , com m < n, uma função de classe C 1 C^1 C 1 e ( a , b ) ∈ R n (a,b) \isin \R^n ( a , b ) ∈ R n tal que a ∈ R n − m a \isin \R^{n-m} a ∈ R n − m , b ∈ R m b \isin \R^m b ∈ R m e
F ( a , b ) = 0 ; ∣ D F y ( a , b ) ∣ ≠ 0 F(a,b) = 0; \; \vert DF_{y}(a,b) \vert \neq 0 F ( a , b ) = 0 ; ∣ D F y ( a , b ) ∣ = 0 Então, existe uma função f f f de classe C 1 C^1 C 1 , tal que, localmente em torno de ( a , b ) (a,b) ( a , b ) se tem
F ( x , y ) = 0 ⇔ y = f ( x ) F(x,y) = 0 \Leftrightarrow y = f(x) F ( x , y ) = 0 ⇔ y = f ( x ) Notas
No caso geral, temos um sistema de m equações em R n R^n R n que nas condições acima descritas define implicitamente m variáveis, definidas por y em função das restantes n-m variáveis restantes, definidas por x . A matriz D F y ( a , b ) DF_y(a,b) D F y ( a , b ) designa a matriz das derivadas parciais da função F em ordem às variáveis designadas por y , no ponto (a,b). Para demonstrar o caso geral, recorre-se ao Teorema da Função Inversa: Detalhes Seja G : R n → R n G: R^n \to R^n G : R n → R n uma função de classe C 1 C^1 C 1 dada por:
G ( x , y ) = ( x , F ( x , y ) ) , l o g o p o r c o n s e q u e ^ n c i a G ( a , b ) = ( x , 0 ) G(x,y) = (x,F(x,y)),\space logo\space por\space consequência\space G(a,b) = (x,0) G ( x , y ) = ( x , F ( x , y ) ) , l o g o p o r c o n s e q u e ^ n c i a G ( a , b ) = ( x , 0 ) ∣ D G ( a , b ) ∣ = det [ I 0 D x F ( a , b ) D y ( a , b ) ] = det D y ( a , b ) ≠ 0 , \vert DG(a,b)\vert = \det\begin{bmatrix} I & 0\\D_xF(a,b) & D_y(a,b) \end{bmatrix} = \det D_y(a,b) \ne 0, ∣ D G ( a , b ) ∣ = det [ I D x F ( a , b ) 0 D y ( a , b ) ] = det D y ( a , b ) = 0 , I I I designa a matriz identidade com (n-m) linhas e (n-m) colunas.
Pelo Teorema da Função Inversa, G G G é localmente injetiva na vizinhana de (a,b) e teremos então:
G ( x , y ) = ( x , F ( x , y ) ) = ( x , 0 ) ⇔ ( x , y ) = G − 1 ( x , 0 ) G(x,y) = (x,F(x,y)) = (x,0) \Leftrightarrow (x,y) = G^{-1}(x,0) G ( x , y ) = ( x , F ( x , y ) ) = ( x , 0 ) ⇔ ( x , y ) = G − 1 ( x , 0 ) ou seja, existe uma função f f f definida na vizinhança do ponto a, tal que se verifica a equivalência:
F ( x , y ) = 0 ⇔ y = f ( x ) F(x,y) = 0 \Leftrightarrow y = f(x) F ( x , y ) = 0 ⇔ y = f ( x ) Visto que G − 1 G^{-1} G − 1 é de classe C 1 C^1 C 1 , a função f f f também será.
Calcular as derivadas implícitas Exemplo em que F : R 3 → R F: \R^3 \to \R F : R 3 → R e queremos calcular ∂ z ∂ x \frac{\partial z}{\partial x} ∂ x ∂ z . Definimos F ( x , y , z ) = 0 F(x,y,z) = 0 F ( x , y , z ) = 0 Calculamos D F ( a , b , c ) DF(a,b,c) D F ( a , b , c ) , e verificamos se D F z ( a , b , c ) ≠ 0 DF_z(a,b,c) \ne 0 D F z ( a , b , c ) = 0 (Se ∂ F ∂ z \frac{\partial F}{\partial z} ∂ z ∂ F = 0 então não podemos escrever z como função implícita de x e de y, como pelo Teorema F. Imp.) Definimos F F F como F ( x , y , f ( x , y ) ) = 0 F(x,y,f(x,y)) = 0 F ( x , y , f ( x , y ) ) = 0 (em que z = f ( x , y ) z = f(x,y) z = f ( x , y ) ) Derivamos F em ordem a x e y (neste caso como só queremos ∂ z ∂ x \frac{\partial z}{\partial x} ∂ x ∂ z podiamos só calcular a derivada de F em ordem a x , mas assim ficamos com o caso geral..) ∂ F ∂ ( x , y ) ( a , b , c ) = { ∂ F ∂ x ( a , b , c ) + ∂ F ∂ z ( a , b , c ) ∂ f ∂ x ( a , b ) = 0 ∂ F ∂ y ( a , b , c ) + ∂ F ∂ z ( a , b , c ) ∂ f ∂ y ( a , b ) = 0 \frac{\partial F}{\partial (x,y)}(a,b,c) = \begin{cases} \frac{\partial F}{\partial x}(a,b,c) + \frac{\partial F}{\partial z}(a,b,c)\frac{\partial f}{\partial x}(a,b) = 0\\ \frac{\partial F}{\partial y}(a,b,c) + \frac{\partial F}{\partial z}(a,b,c)\frac{\partial f}{\partial y}(a,b) = 0\end{cases} ∂ ( x , y ) ∂ F ( a , b , c ) = { ∂ x ∂ F ( a , b , c ) + ∂ z ∂ F ( a , b , c ) ∂ x ∂ f ( a , b ) = 0 ∂ y ∂ F ( a , b , c ) + ∂ z ∂ F ( a , b , c ) ∂ y ∂ f ( a , b ) = 0 Massajar a equação ∂ F ∂ x ( a , b , c ) + ∂ F ∂ z ( a , b , c ) ∂ f ∂ x ( a , b ) = 0 \frac{\partial F}{\partial x}(a,b,c) + \frac{\partial F}{\partial z}(a,b,c)\frac{\partial f}{\partial x}(a,b) = 0 ∂ x ∂ F ( a , b , c ) + ∂ z ∂ F ( a , b , c ) ∂ x ∂ f ( a , b ) = 0 ∂ F ∂ x ( a , b , c ) + ∂ F ∂ z ( a , b , c ) ∂ f ∂ x ( a , b ) = 0 ⇔ ⇔ ∂ F ∂ z ( a , b , c ) ∂ f ∂ x ( a , b ) = − ∂ F ∂ x ( a , b , c ) ⇔ ⇔ ∂ f ∂ x ( a , b ) = − ∂ F ∂ x ( a , b , c ) ∂ F ∂ z ( a , b , c ) ⇔ ⇔ ∂ z ∂ x ( a , b ) = − ∂ F ∂ x ( a , b , c ) ∂ F ∂ z ( a , b , c ) \\
\frac{\partial F}{\partial x}(a,b,c) + \frac{\partial F}{\partial z}(a,b,c)\frac{\partial f}{\partial x}(a,b) = 0 \Leftrightarrow \\ \Leftrightarrow \frac{\partial F}{\partial z}(a,b,c)\frac{\partial f}{\partial x}(a,b) = -\frac{\partial F}{\partial x}(a,b,c) \Leftrightarrow \\ \Leftrightarrow \frac{\partial f}{\partial x}(a,b) = \frac{-\frac{\partial F}{\partial x}(a,b,c)}{\frac{\partial F}{\partial z}(a,b,c)} \Leftrightarrow \\ \Leftrightarrow \frac{\partial z}{\partial x}(a,b) = \frac{-\frac{\partial F}{\partial x}(a,b,c)}{\frac{\partial F}{\partial z}(a,b,c)}
∂ x ∂ F ( a , b , c ) + ∂ z ∂ F ( a , b , c ) ∂ x ∂ f ( a , b ) = 0 ⇔ ⇔ ∂ z ∂ F ( a , b , c ) ∂ x ∂ f ( a , b ) = − ∂ x ∂ F ( a , b , c ) ⇔ ⇔ ∂ x ∂ f ( a , b ) = ∂ z ∂ F ( a , b , c ) − ∂ x ∂ F ( a , b , c ) ⇔ ⇔ ∂ x ∂ z ( a , b ) = ∂ z ∂ F ( a , b , c ) − ∂ x ∂ F ( a , b , c ) Vitória! Mas e se F não for um campo escalar (R n → R \R^n \to \R R n → R )? Exemplo em que F : R 3 → R 2 F: \R^3 \to \R^2 F : R 3 → R 2 Seja F ( x , y , z ) = { F 1 ( x , y , z ) = 0 F 2 ( x , y , z ) = 0 F(x,y,z) = \begin{cases} F_1(x,y,z) = 0 \\ F_2(x,y,z) = 0 \end{cases} F ( x , y , z ) = { F 1 ( x , y , z ) = 0 F 2 ( x , y , z ) = 0 Neste caso conseguimos escrever 2 incognitas em função da terceira, como por exemplo y = f ( x ) y = f(x) y = f ( x ) e z = g ( x ) z = g(x) z = g ( x ) . Calculamos D F ( a , b , c ) DF(a,b,c) D F ( a , b , c ) , e verificamos se ∣ D F y z ( a , b , c ) ∣ ≠ 0 \vert DF_{yz}(a,b,c) \vert \ne 0 ∣ D F y z ( a , b , c ) ∣ = 0 (Tal como no exemplo acima, se o ∣ D F y z ( a , b , c ) ∣ = 0 \vert DF_{yz}(a,b,c) \vert = 0 ∣ D F y z ( a , b , c ) ∣ = 0 não conseguimos escrever y e z como funções de x) Definimos F ( x , y , z ) = { F 1 ( x , f ( x ) , g ( x ) ) = 0 F 2 ( x , f ( x ) , g ( x ) ) = 0 F(x,y,z) = \begin{cases} F_1(x,f(x),g(x)) = 0 \\ F_2(x,f(x),g(x)) = 0 \end{cases} F ( x , y , z ) = { F 1 ( x , f ( x ) , g ( x ) ) = 0 F 2 ( x , f ( x ) , g ( x ) ) = 0 Se quisermos as derivadas em ordem a x como no exemplo anterior então: ∂ F ∂ x ( a , b , c ) = { ∂ F 1 ∂ x ( a , b , c ) + ∂ F 1 ∂ y ( a , b , c ) ∂ f ∂ x ( a ) + ∂ F 1 ∂ z ( a , b , c ) ∂ g ∂ x ( a ) = 0 ∂ F 2 ∂ x ( a , b , c ) + ∂ F 2 ∂ y ( a , b , c ) ∂ f ∂ x ( a ) + ∂ F 2 ∂ z ( a , b , c ) ∂ g ∂ x ( a ) = 0 \frac{\partial F}{\partial x}(a,b,c) = \begin{cases} \frac{\partial F_1}{\partial x}(a,b,c) + \frac{\partial F_1}{\partial y}(a,b,c) \frac{\partial f}{\partial x}(a) + \frac{\partial F_1}{\partial z}(a,b,c) \frac{\partial g}{\partial x}(a) = 0 \\
\frac{\partial F_2}{\partial x}(a,b,c) + \frac{\partial F_2}{\partial y}(a,b,c) \frac{\partial f}{\partial x}(a) + \frac{\partial F_2}{\partial z}(a,b,c) \frac{\partial g}{\partial x}(a) = 0\end{cases} ∂ x ∂ F ( a , b , c ) = { ∂ x ∂ F 1 ( a , b , c ) + ∂ y ∂ F 1 ( a , b , c ) ∂ x ∂ f ( a ) + ∂ z ∂ F 1 ( a , b , c ) ∂ x ∂ g ( a ) = 0 ∂ x ∂ F 2 ( a , b , c ) + ∂ y ∂ F 2 ( a , b , c ) ∂ x ∂ f ( a ) + ∂ z ∂ F 2 ( a , b , c ) ∂ x ∂ g ( a ) = 0 Massajamos ∂ F ∂ x ( a , b , c ) \frac{\partial F}{\partial x}(a,b,c) ∂ x ∂ F ( a , b , c ) de modo a acharmos f ′ ( a ) f'(a) f ′ ( a ) e g ′ ( a ) g'(a) g ′ ( a ) ∂ F ∂ x ( a , b , c ) = { ∂ F 1 ∂ y ( a , b , c ) ∂ f ∂ x ( a ) + ∂ F 1 ∂ z ( a , b , c ) ∂ g ∂ x ( a ) = − ∂ F 1 ∂ x ( a , b , c ) ∂ F 2 ∂ y ( a , b , c ) ∂ f ∂ x ( a ) + ∂ F 2 ∂ z ( a , b , c ) ∂ g ∂ x ( a ) = − ∂ F 2 ∂ x ( a , b , c ) ⇔ ⇔ [ ∂ F 1 ∂ y ( a , b , c ) ∂ F 1 ∂ z ( a , b , c ) ∂ F 2 ∂ y ( a , b , c ) ∂ F 2 ∂ z ( a , b , c ) ] [ f ′ ( a ) g ′ ( a ) ] = − [ ∂ F 1 ∂ x ( a , b , c ) ∂ F 2 ∂ x ( a , b , c ) ] \frac{\partial F}{\partial x}(a,b,c) = \begin{cases} \frac{\partial F_1}{\partial y}(a,b,c) \frac{\partial f}{\partial x}(a) + \frac{\partial F_1}{\partial z}(a,b,c) \frac{\partial g}{\partial x}(a) = -\frac{\partial F_1}{\partial x}(a,b,c)\\
\frac{\partial F_2}{\partial y}(a,b,c) \frac{\partial f}{\partial x}(a) + \frac{\partial F_2}{\partial z}(a,b,c) \frac{\partial g}{\partial x}(a) = -\frac{\partial F_2}{\partial x}(a,b,c)\end{cases} \Leftrightarrow \\ \Leftrightarrow
\begin{bmatrix}
\frac{\partial F_1}{\partial y}(a,b,c) & \frac{\partial F_1}{\partial z}(a,b,c) \\ \frac{\partial F_2}{\partial y}(a,b,c) & \frac{\partial F_2}{\partial z}(a,b,c)
\end{bmatrix}
\begin{bmatrix}
f'(a) \\ g'(a)
\end{bmatrix}
= -
\begin{bmatrix}
\frac{\partial F_1}{\partial x}(a,b,c) \\
\frac{\partial F_2}{\partial x}(a,b,c)
\end{bmatrix}
∂ x ∂ F ( a , b , c ) = { ∂ y ∂ F 1 ( a , b , c ) ∂ x ∂ f ( a ) + ∂ z ∂ F 1 ( a , b , c ) ∂ x ∂ g ( a ) = − ∂ x ∂ F 1 ( a , b , c ) ∂ y ∂ F 2 ( a , b , c ) ∂ x ∂ f ( a ) + ∂ z ∂ F 2 ( a , b , c ) ∂ x ∂ g ( a ) = − ∂ x ∂ F 2 ( a , b , c ) ⇔ ⇔ [ ∂ y ∂ F 1 ( a , b , c ) ∂ y ∂ F 2 ( a , b , c ) ∂ z ∂ F 1 ( a , b , c ) ∂ z ∂ F 2 ( a , b , c ) ] [ f ′ ( a ) g ′ ( a ) ] = − [ ∂ x ∂ F 1 ( a , b , c ) ∂ x ∂ F 2 ( a , b , c ) ] Só conseguimos calcular as derivadas se
det [ ∂ F 1 ∂ y ( a , b , c ) ∂ F 1 ∂ z ( a , b , c ) ∂ F 2 ∂ y ( a , b , c ) ∂ F 2 ∂ z ( a , b , c ) ] ≠ 0 ⇔ ∣ D F y z ( a , b , c ) ∣ ≠ 0
\det
\begin{bmatrix}
\frac{\partial F_1}{\partial y}(a,b,c) & \frac{\partial F_1}{\partial z}(a,b,c) \\ \frac{\partial F_2}{\partial y}(a,b,c) & \frac{\partial F_2}{\partial z}(a,b,c)
\end{bmatrix}
\ne 0 \Leftrightarrow \vert DF_{yz}(a,b,c) \vert \ne 0
det [ ∂ y ∂ F 1 ( a , b , c ) ∂ y ∂ F 2 ( a , b , c ) ∂ z ∂ F 1 ( a , b , c ) ∂ z ∂ F 2 ( a , b , c ) ] = 0 ⇔ ∣ D F y z ( a , b , c ) ∣ = 0 No caso de conseguirmos temos, então
[ f ′ ( a ) g ′ ( a ) ] = − [ ∂ F 1 ∂ y ( a , b , c ) ∂ F 1 ∂ z ( a , b , c ) ∂ F 2 ∂ y ( a , b , c ) ∂ F 2 ∂ z ( a , b , c ) ] − 1 [ ∂ F 1 ∂ x ( a , b , c ) ∂ F 2 ∂ x ( a , b , c ) ]
\begin{bmatrix}
f'(a) \\ g'(a)
\end{bmatrix}
= -
\begin{bmatrix}
\frac{\partial F_1}{\partial y}(a,b,c) & \frac{\partial F_1}{\partial z}(a,b,c) \\ \frac{\partial F_2}{\partial y}(a,b,c) & \frac{\partial F_2}{\partial z}(a,b,c)
\end{bmatrix}^{-1}
\begin{bmatrix}
\frac{\partial F_1}{\partial x}(a,b,c) \\
\frac{\partial F_2}{\partial x}(a,b,c)
\end{bmatrix}
[ f ′ ( a ) g ′ ( a ) ] = − [ ∂ y ∂ F 1 ( a , b , c ) ∂ y ∂ F 2 ( a , b , c ) ∂ z ∂ F 1 ( a , b , c ) ∂ z ∂ F 2 ( a , b , c ) ] − 1 [ ∂ x ∂ F 1 ( a , b , c ) ∂ x ∂ F 2 ( a , b , c ) ] =] Casos gerais visitados. Last Updated: 7/5/2021, 8:50:27 AM